Tensile strain is defined as the fractional change in the original length of the wire. What does the area between the loading and unloading curves for a rubber band represent? It is elastic deformation, but does not obey Hooke's Law. 15 - . Join / Login >> Class 11 . Here we will see. Determine the distance h by which the ball clears the top of the cliff and the time t after release for the ball to land at B. Point where the material extends rapidly. plastic only. And after the weight is suspended, the length of the spring becomes $ 16.4cm $ . Point B is the yield point . The force on a sample of a material is gradually increased and then decreased. Force-extension graphs. The length of wire will increase We know, Poisson's ratio, e = d d L L (1) Volume of wire, V = A L = d 2 L 4 where d is the diameter of the wire. Figure 7.20 a These are stress-strain curves for three different materials, P, Q and R. State and explain which material has the greatest Young modulus. What is the gap between an unloading and loading curve at the x-axis? Attach the spring at one end using a clamp, boss, and clamp stand secured to the bench using a g-clamp or a large mass. It is given that, the wire will stretch. The force-extension graph of a metal wire is shown. Rubber bands do not obey Hooke's law. Non-linear extension and plastic deformation can be seen above the elastic limit. As the graph of Force vs extension is no longer linear. Force constant = force / extension for a component obeying Hooke's Law. Ductile behaviour is also an example of plastic deformation.if(typeof ez_ad_units != 'undefined'){ez_ad_units.push([[320,50],'physicsteacher_in-box-4','ezslot_1',148,'0','0'])};__ez_fad_position('div-gpt-ad-physicsteacher_in-box-4-0'); In Figure 1 the dotted line represents the extension measured as the force is removed from the loaded wire. In this graph, the stress is directly proportional to the strain from the origin to P, the limit of proportionality. The graph shows how the extension of a spring varies with the force used to stretch it. Elastic deformation occurs up to the elastic limit, and plastic deformation beyond it. The material fractures and breaks. 1. From A to B the extension is proportional to the applied load. var ins = document.createElement('ins'); container.style.width = '100%'; The adjacent graph shows the extension \[(\Delta l)\] of a wire of length 1m suspended from the . Determine the energy stored in the wire when the extension is 0.8 mm. In Figure 1 the dotted line represents the extension measured as the force is removed from the loaded wire. 16 A metal wire is stretched by a load. Point B is the yield point . What happens between UTS and the point of breaking? After this, you can plot the extensions on a force-extension . Measure the original length of the wire using a meter ruler. Resists deforming by tension or compression. A ball is thrown vertically upward with an initial speed of 80 ft/sec from the base A of a 50-ft cliff. The 'loop' formed by the loading and unloading curves is called a hysteresis loop. Can work done in compressing or extending materials be fully recovered? They show ductility. A layer of oil (n=1.45) floats on an unknown liquid. It is also known as the Load-Extension graph. Neglecting the weight of the cables and assuming the guide rails and the pulleys to be frictionless, determine (a) the power required while the fully loaded cabin is rising at a constant speed of 1.2 m/s and (b) the power required while the empty cabin is descending at a constant speed of 1.2 m/s. This Extension-Load graph is drawn to see how the extension of a spring depends on the applied load. force extension 0 0 What is represented by the area under the whole graph? The material obeys Hooke's law in this linear region. 18 A metal wire is stretched by a load. Resistance of metal increases with an increase in temperature how. HDTTTW~;(pVhPH)CH6BPz8dAea(P8XA$'?}{n/F1edd;'0huhop)?@__Y&v~`soB3Bj6PEyPESdBR+x "%j(xIIEA0JVT :-R0rT+fveo58in1`go`uD!v3lXN/9F||:FM %PDF-1.3 % You might also measure the mass of each slotted mass using a digital balance. A brittle material is one that shows little, or no, plastic deformation before breaking. . A the change in gravitational potential energy of the wire B the energy that would be released from the wire if the final load was removed C the energy transferred into heat energy in the wire 3pFg2D~Po``,o;f }'m] ] K`U07qaA4I{vBB}.3%hF|y{H}95= 4b-&|A%7GR:]LPi4~9Piz)Q{+v332CR'h,CaYH>t&9N"bwz?Bhzf *{^0kA'Vhn. 60 seconds. Also, if the load is removed the specimen returns to its original length. [4] b . The increase in thermal energy in the sample is represented by area AR BP + Q CP + Q + R DP + Q R (Total 1 mark) 11 (b) By using the identity $\nabla \cdot(\phi \nabla \phi)=(\nabla \phi)^{2}+\phi \nabla^{2} \phi$, show that the two methods give the same energy for conductors of any shape. The graph of force against extension is shown in the diagram. An example of a force-extension graph for such a material is: The curve for contraction is always below the curve for stretching, Polyethene is a common polymer or polymeric material, It does not obey Hookes law and experiences, This makes it very easy to stretch into new shapes, but difficult to return to its original shape, Set up the apparatus as shown in the diagram. 1. 20 The diagram shows the force-extension graph for a steel wire, . When tensile forces act away from the centre of the spring in both directions.W How can you determine the Young modulus of a wire? Ductile materials can be formed into wires by stretching them. ii) Fracture point Does not return to its original shape after being deformed. that given by the area under the force - extension graph) if we know the volume of the object. Each wire has a cross-sectional area of 2.4 10-6 m2. The loading graph follows Hooke's law until the elastic limit of the wire. A restaurant added a new outdoor section that was 7 feet wide and 9 feet long. What are the types of deformation, depending on the type of force? In this linear region, the spring undergoes elastic deformation. A the change in gravitational potential energy of the wire B the energy that would be released from the wire if the final load was removed C the energy transferred into heat energy in the wire As the graph of Force vs extension is no longer linear. Up to this point, the loading curve is the same as the unloading curve; Determine the mass that must be converted to energy during a 70-year lifetime to continually provide electric power for a person at a rate of 1000 W. The production of the electric power from mass is only about 33% efficient. (Definition). A sample of metal is subjected to a force which increases to a maximum value and then decreases back to zero. deformation can be seen below the limit of proportionality. The unloading graph will be identical for forces less than the elastic limit. . A capacitor consists of two arbitrarily shaped conducting shells, with one inside the other. Or if we know the potential difference $\phi$, we can write $U=Q \phi / 2$ (or equivalently $U=C \phi^{2} / 2$). tD.B fL{AAEXj?//H* !Phz-syM[-5IS eisjHmNt\$kc ={'Iv3 Finding elastic limit from a force extension graph; Calculating Resistance Band Tension; Hysteresis graph for an elastic band; Loading and unloading curves of rubber bands, metal wires and polythene; Edexcel Unit 3 (IAL): Exploring Physics, WPH03 (26th January 2016) Force-Extension Graph for Rubber; Quicky: Yield Stress From A Force-Extension Graph More work is done when stretching a rubber band than is done when it's extension decreases again. Equation for elastic potential energy with force: Equation for elastic potential energy with spring constant: Are loading and unloading curves the same? On a force extension graph (as opposed to a stress-strain graph), you also have the effect of the band getting narrower, meaning it requires less force, for a while, to extend the band. extension force strain stress 0 0 0 0 The Young modulus for this wire is equal to A the gradient of the force-extension graph. The wire is permanently extended after the force is removed -it is longer than it was at the start. From the data given in the question, a load F acting on the metallic wire is as shown in figure. 2.2, sketch a graph to show the variation with time t of the distance d moved . 5. Figure 2 shows a typical force-extension graph for high-carbon steel, which is also a brittle material. The increase in thermal energy in the sample is represented by area AR BP + Q CP + Q + R DP + Q R (Total 1 mark) 14 . Tensile deformation - tensile forces are exerted. Beyond point A, the spring undergoes plastic deformation: permanent structural changes to the spring occur and it does not return to its original length when the force is removed. var ffid = 2; Metal Wire. However, beyond the elastic limit it is parallel to the loading graph but not identical to it. It can be seen that the wire has permanently lengthened because, even with no applied force, there is still a measurable extension. endstream endobj 157 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 120 /Widths [ 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 502 0 556 278 0 0 221 0 0 221 0 556 556 556 0 334 502 278 0 0 723 502 ] /Encoding /WinAnsiEncoding /BaseFont /FDKING+TT256Eo00 /FontDescriptor 273 0 R >> endobj 158 0 obj << /Type /Font /Subtype /Type1 /FirstChar 49 /LastChar 50 /Widths [ 555 555 ] /Encoding /WinAnsiEncoding /BaseFont /FDKJBG+TT256Fo00 /FontDescriptor 275 0 R >> endobj 159 0 obj << /Type /Font /Subtype /Type1 /FirstChar 73 /LastChar 73 /Widths [ 421 ] /Encoding /WinAnsiEncoding /BaseFont /FDKKDA+Verdana-Italic /FontDescriptor 277 0 R >> endobj 160 0 obj << /Type /Font /Subtype /Type1 /FirstChar 77 /LastChar 103 /Widths [ 833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 557 ] /Encoding /WinAnsiEncoding /BaseFont /FDKKIP+TT2572o00 /FontDescriptor 279 0 R >> endobj 161 0 obj << /Type /Font /Subtype /Type1 /FirstChar 49 /LastChar 51 /Widths [ 555 555 555 ] /Encoding /WinAnsiEncoding /BaseFont /FDKKKP+TT2573o00 /FontDescriptor 281 0 R >> endobj 162 0 obj << /Type /Font /Subtype /Type1 /FirstChar 78 /LastChar 97 /Widths [ 722 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 557 ] /Encoding /WinAnsiEncoding /BaseFont /FDKKMA+TT2574o00 /FontDescriptor 283 0 R >> endobj 163 0 obj << /Type /Font /Subtype /Type1 /FirstChar 80 /LastChar 81 /Widths [ 668 778 ] /Encoding /WinAnsiEncoding /BaseFont /FDKKPA+TT2575o00 /FontDescriptor 285 0 R >> endobj 164 0 obj << /Type /Font /Subtype /Type1 /FirstChar 1 /LastChar 1 /Widths [ 548 ] /Encoding 316 0 R /BaseFont /FDKKPB+TT2576o00 /FontDescriptor 287 0 R /ToUnicode 317 0 R >> endobj 165 0 obj << /Type /Font /Subtype /Type1 /FirstChar 43 /LastChar 43 /Widths [ 549 ] /Encoding /WinAnsiEncoding /BaseFont /FDKKPC+TT2577o00 /FontDescriptor 289 0 R >> endobj 166 0 obj << /Type /Font /Subtype /Type1 /FirstChar 48 /LastChar 49 /Widths [ 502 502 ] /Encoding /WinAnsiEncoding /BaseFont /FDKLAC+TT2578o00 /FontDescriptor 291 0 R >> endobj 167 0 obj << /Type /Font /Subtype /Type1 /FirstChar 40 /LastChar 104 /Widths [ 333 333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 611 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 557 ] /Encoding /WinAnsiEncoding /BaseFont /FDKLAD+TT2579o00 /FontDescriptor 293 0 R >> endobj 168 0 obj << /Type /Font /Subtype /Type1 /FirstChar 48 /LastChar 57 /Widths [ 555 0 555 555 555 0 0 0 0 555 ] /Encoding /WinAnsiEncoding /BaseFont /FDKLBE+TT257Ao00 /FontDescriptor 295 0 R >> endobj 169 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 32 /Widths [ 251 ] /Encoding /WinAnsiEncoding /BaseFont /FDKLGD+TT257Bo00 /FontDescriptor 297 0 R >> endobj 170 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 32 /Widths [ 251 ] /Encoding /WinAnsiEncoding /BaseFont /FDKLGE+TT257Co00 /FontDescriptor 299 0 R >> endobj 171 0 obj << /Type /FontDescriptor /Ascent 758 /CapHeight 758 /Descent 0 /Flags 32 /FontBBox [ 0 -198 820 729 ] /FontName /FDKEKM+TT253Fo00 /ItalicAngle 0 /StemV 0 /CharSet (/two/D/a/t/space/three/bracketleft/T/u/r/n/o/v/e/F/m/l/four/one/A/B/C/fi\ ve/six/s/seven/eight/nine/d/f/i/zero/L/N/K/P/G/E) /FontFile3 172 0 R >> endobj 172 0 obj << /Filter /FlateDecode /Length 3888 /Subtype /Type1C >> stream Y1 and Y2 are upper and lower yield points, where the material extends rapidly. Show that the force constant k is given by: EA k= l where E is the Young modulus of the metal, A is the cross-sectional area of the wire and l is the natural length of the wire. Extension-Load graph of Spring with Lab set-up and Analysis of the graph. Materials like clay or putty usually show non-linear extension. The sample was 2.2 m long and had a cross-sectional area of 8.8 mm? C the gradient of the stress-strain . Report 11 years ago. Extension will depend on the original length of the wire, it's diameter, the tension in the wire, and of course the material of the wire. If you repeatedly stretch and release a rubber band, you can feel the effect of heating caused by hysteresis. 19 The force-extension graph of a metal wire is shown. The weight of the elevator cabin is partially balanced by a 400-kg counterweight that is connected to the top of the cabin by cables that pass through a pulley located on top of the elevator well. Hooke's Law is usually obeyed for compression as well as extension in cases like this. It does not show plastic behaviour. An irreversible change in the shape of an object due to a compressive or tensile force. Thermal energy is released when the material is loaded then unloaded, represented by the area inside the hysteresis loop. F is the applied force, e is extension obtained at force F, A is the area of the cross section of the object and. However, beyond the elastic limit it is parallel to the loading graph but not identical to it. The F vs x graph applies to a particular piece of wire. The diagram shows the force-extension graph for a sample of material. As its a force-extension graph, and work done is. In this case, the upper curve represents the work done on the object against tension while extending it, and the lower curve is the energy recovered (work done by the object) when the object returns to a . The way in which ductile and brittle materials fracture is also different. The force on a sample of a material is gradually increased and then decreased. var cid = '7377982948'; Materials may obey Hooke's law up to this limit but not always. When the force is removed, the bonds return to their original length. Hang a spring from the clamp and boss and secure it so that it will not fall off, Secure the metre rule vertically to the clamp, using the set square to ensure it is straight and place it adjacent to the spring, Record the metre rule reading at the bottom of the spring and place a fiducial marker on this point. The rubber band will return to its original length after the force is removed -elastic deformation- but the loading and unloading graphs are both curved and are different. the graph for a metal wire that has been stretched beyond its limit of proportionality so the graph starts to curve. This effect is called hysteresis. What does the force extension graph for a rubber band look like? This is known as ductility and is a very useful property as it allows metals to be formed into thin wires. What is the index of refraction of the unknown liquid? The graph below shows how the force applied to a metal wire is related to the extension of the wire. On a force-extension graph, necking occurs in the plastic region of the graph. 0 0 50 100 150 200 1.0 2.0 3.0 x /cm F /N 4.0 Fig. When converted to stress vs strain the graph should be the same for all pieces of wire with those material properties. The graph of force against extension is shown in the diagram. Smith, Michael Abbott, Julian Smith, Peter Harriott, Warren McCabe. ins.style.display = 'block'; Obeys Hooke's Law up to the elastic limit. So the extended length is, $ x = \left ( {16.4 - 15.0} \right)cm $ This gives us the value of extension as $ x = 1.4cm $ Returns to its original shape after being deformed. When identifying the element classification of a particular atom, which type of subatomic particle is used? What does the force extension graph for a polyethene strip look like? Different materials respond differently to tensile forces. She particularly loves creating fun and absorbing materials to help students achieve their exam potential. The extension of the spring is directly proportional to the force applied. then the area under a F-x graph will represent work done. What does the area beneath an unloading curve represent? b. The force - extension graph is a straight line from the origin to the elastic limit (Point A) of the spring. The wire formed shows plastic behaviour and will not return to its original length when the force is removed. What is the difference between the limit of proportionality and the elastic limit? This is seen as a straight line that passes through the origin. Show that the force constant k is given by: k = EA l where E is the Young modulus of the metal, A is the cross-sectional area of the wire and l is the natural length of the wire. The force-extension graph is shown. What is the strain energy stored in the spring when the extension is 4.0 cm? In the question, it is given that the unstretched length of the spring is $ 15.0cm $ . The. lo.observe(document.getElementById(slotId + '-asloaded'), { attributes: true }); Now we need to calculate the extension of the spring. 5 A force is applied to a length of wire. Record the new metre rule reading, the number of masses and the extension of the spring, Add another mass. The gradient of the linear part will be equal to the force constant, Reduce parallax error by reading the metre ruler at eye-level, Use a set square to make sure the ruler is straight and perpendicular to the bench or table, Use a fiducial marker to mark the original position of the material, Ensure the material is stationary before a reading is made, Repeat the experiment several times and calculate an average, When stretching materials, there is a danger that they may snap under the high tension, A box or landing mat should be placed below the hanger to catch the weight if it falls, Make sure to not stand directly underneath the hanging masses. A steel bar of circular cross-section is under tension T, as shown. 1 0 obj << /Type /Page /Parent 320 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 105 0 R /T1_3 106 0 R /T1_4 107 0 R /T1_5 108 0 R /T1_6 109 0 R /T1_7 110 0 R /T1_8 111 0 R /T1_9 112 0 R /T1_10 113 0 R /T1_11 114 0 R >> /ExtGState 453 0 R /ProcSet [ /PDF /Text ] >> /Contents 451 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102206Z) >> endobj 4 0 obj << /Type /Page /Parent 320 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 105 0 R /T1_3 106 0 R /T1_4 115 0 R /T1_5 116 0 R /T1_6 117 0 R /T1_7 108 0 R /T1_8 107 0 R /T1_9 110 0 R /T1_10 109 0 R /T1_11 118 0 R /T1_12 119 0 R /T1_13 120 0 R /T1_14 121 0 R /T1_15 122 0 R /T1_16 123 0 R /T1_17 124 0 R /T1_18 125 0 R /T1_19 126 0 R /T1_20 127 0 R /T1_21 128 0 R /T1_22 129 0 R /T1_23 130 0 R /T1_24 131 0 R /T1_25 132 0 R /T1_26 133 0 R /T1_27 134 0 R /T1_28 135 0 R /T1_29 136 0 R /T1_30 137 0 R /T1_31 138 0 R /T1_32 139 0 R /T1_33 140 0 R /T1_34 141 0 R /T1_35 142 0 R /T1_36 143 0 R /T1_37 144 0 R >> /ExtGState 460 0 R /ProcSet [ /PDF /Text ] >> /Contents 458 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102208Z) >> endobj 7 0 obj << /Type /Page /Parent 320 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 107 0 R /T1_4 108 0 R /T1_5 109 0 R /T1_6 146 0 R /T1_7 147 0 R /T1_8 148 0 R /T1_9 106 0 R /T1_10 149 0 R /T1_11 150 0 R /T1_12 151 0 R /T1_13 152 0 R >> /ExtGState 475 0 R /ProcSet [ /PDF /Text ] >> /Contents 473 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102211Z) >> endobj 12 0 obj << /Type /Page /Parent 320 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 146 0 R /T1_4 106 0 R /T1_5 109 0 R /T1_6 108 0 R /T1_7 148 0 R /T1_8 154 0 R >> /ExtGState 484 0 R /ProcSet [ /PDF /Text ] >> /Contents 482 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102213Z) >> endobj 19 0 obj << /Type /Page /Parent 320 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 146 0 R >> /ColorSpace << /CS0 155 0 R / /DeviceGray >> /Shading << /Sh0 26 0 R >> /ExtGState 493 0 R /ProcSet [ /PDF /Text ] >> /Contents 491 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102215Z) >> endobj 24 0 obj << /FunctionType 2 /Domain [ 0 1 ] /C0 [ 0.17999 ] /C1 [ 0.74001 ] /N 1 >> endobj 25 0 obj << /FunctionType 3 /Domain [ 0 1 ] /Functions [ 24 0 R ] /Encode [ 0 1 ] /Bounds [ ] >> endobj 26 0 obj << /ShadingType 3 /ColorSpace 155 0 R /Function 25 0 R /Coords [ 0 0 0 0 0 1 ] /Extend [ true true ] >> endobj 27 0 obj << /Type /Page /Parent 320 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 106 0 R /T1_4 146 0 R /T1_5 148 0 R /T1_6 147 0 R /T1_7 154 0 R >> /ExtGState 501 0 R /ProcSet [ /PDF /Text ] >> /Contents 499 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102217Z) >> endobj 34 0 obj << /Type /Page /Parent 320 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 106 0 R /T1_4 146 0 R /T1_5 148 0 R /T1_6 154 0 R /T1_7 109 0 R >> /ExtGState 510 0 R /ProcSet [ /PDF /Text ] >> /Contents 508 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102219Z) >> endobj 43 0 obj << /Type /Page /Parent 320 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 106 0 R /T1_4 148 0 R /T1_5 146 0 R /T1_6 109 0 R /T1_7 108 0 R >> /ExtGState 518 0 R /ProcSet [ /PDF /Text ] >> /Contents 516 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102221Z) >> endobj 50 0 obj << /Type /Page /Parent 320 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 109 0 R /T1_4 146 0 R /T1_5 157 0 R >> /ExtGState 527 0 R /ProcSet [ /PDF /Text ] >> /Contents 525 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102222Z) >> endobj 57 0 obj << /Type /Page /Parent 322 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 107 0 R /T1_4 108 0 R /T1_5 109 0 R /T1_6 146 0 R /T1_7 106 0 R /T1_8 158 0 R >> /ExtGState 536 0 R /ProcSet [ /PDF /Text ] >> /Contents 534 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102224Z) >> endobj 62 0 obj << /Type /Page /Parent 322 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 146 0 R /T1_4 109 0 R /T1_5 107 0 R /T1_6 108 0 R >> /ExtGState 545 0 R /ProcSet [ /PDF /Text ] >> /Contents 543 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102225Z) >> endobj 69 0 obj << /Type /Page /Parent 322 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 146 0 R /T1_4 154 0 R /T1_5 107 0 R /T1_6 108 0 R /T1_7 109 0 R >> /ExtGState 553 0 R /ProcSet [ /PDF /Text ] >> /Contents 551 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102227Z) >> endobj 76 0 obj << /Type /Page /Parent 322 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 109 0 R /T1_4 107 0 R /T1_5 108 0 R >> /ExtGState 561 0 R /ProcSet [ /PDF /Text ] >> /Contents 559 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102229Z) >> endobj 79 0 obj << /Type /Page /Parent 322 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 106 0 R /T1_4 108 0 R /T1_5 148 0 R /T1_6 146 0 R /T1_7 159 0 R /T1_8 138 0 R /T1_9 109 0 R /T1_10 107 0 R >> /ExtGState 567 0 R /ProcSet [ /PDF /Text ] >> /Contents 565 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102231Z) >> endobj 86 0 obj << /Type /Page /Parent 322 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 109 0 R /T1_4 107 0 R /T1_5 108 0 R /T1_6 160 0 R /T1_7 161 0 R /T1_8 162 0 R /T1_9 163 0 R /T1_10 164 0 R /T1_11 165 0 R /T1_12 166 0 R >> /ExtGState 575 0 R /ProcSet [ /PDF /Text ] >> /Contents 573 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102232Z) >> endobj 89 0 obj << /Type /Page /Parent 322 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R /T1_3 167 0 R /T1_4 168 0 R /T1_5 107 0 R /T1_6 108 0 R /T1_7 146 0 R /T1_8 154 0 R >> /ExtGState 582 0 R /ProcSet [ /PDF /Text ] >> /Contents 580 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102235Z) >> endobj 94 0 obj << /Type /Page /Parent 322 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R >> /ExtGState 590 0 R /ProcSet [ /PDF /Text ] >> /Contents 588 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102238Z) >> endobj 97 0 obj << /Type /Page /Parent 322 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 145 0 R >> /ExtGState 596 0 R /ProcSet [ /PDF /Text ] >> /Contents 594 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102241Z) >> endobj 100 0 obj << /Type /Page /Parent 322 0 R /Resources << /Font << /T1_0 103 0 R /T1_1 104 0 R /T1_2 169 0 R /T1_3 108 0 R /T1_4 170 0 R /T1_5 145 0 R >> /ExtGState 602 0 R /ProcSet [ /PDF /Text ] >> /Contents 600 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 /TrimBox [ 0 0 595 842 ] /BleedBox [ 0 0 595 842 ] /LastModified (D:20151006102244Z) >> endobj 103 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 118 /Widths [ 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 557 557 557 557 557 557 557 557 557 557 0 0 0 0 0 0 0 722 722 722 722 667 611 778 0 0 0 722 611 0 722 0 667 0 0 0 611 0 0 0 0 0 0 333 0 0 0 0 0 557 0 0 611 557 333 0 0 278 0 0 278 889 611 611 0 0 389 557 333 611 557 ] /Encoding /WinAnsiEncoding /BaseFont /FDKEKM+TT253Fo00 /FontDescriptor 171 0 R >> endobj 104 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 150 /Widths [ 278 0 0 0 0 889 0 0 333 333 0 585 278 333 278 278 557 557 557 557 557 557 557 557 557 557 0 0 585 585 585 557 0 667 667 722 722 667 611 0 722 278 500 667 0 833 722 0 667 778 722 667 611 0 667 943 667 667 611 0 0 0 0 0 0 557 557 500 557 557 278 557 557 222 222 500 222 833 557 557 557 557 333 500 278 557 500 722 500 500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 222 0 0 0 557 ] /Encoding /WinAnsiEncoding /BaseFont /FDKEKN+TT2540o00 /FontDescriptor 173 0 R >> endobj 105 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 169 /Widths [ 276 0 0 0 0 0 0 0 0 0 0 0 0 0 0 276 557 557 557 0 0 0 557 557 0 557 0 0 0 0 0 0 0 0 0 724 0 667 610 0 0 0 0 0 557 833 0 0 0 0 0 667 0 724 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 738 ] /Encoding /WinAnsiEncoding /BaseFont /FDKEKO+TT2541o00 /FontDescriptor 175 0 R >> endobj 106 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 121 /Widths [ 278 0 0 0 0 0 0 0 0 0 0 0 0 0 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 667 0 722 0 0 611 778 0 0 0 0 0 833 722 0 0 0 722 0 0 0 667 943 667 667 0 0 0 0 0 0 0 557 0 500 0 557 278 557 557 0 0 500 0 833 557 0 557 557 0 500 278 557 500 0 500 500 ] /Encoding /WinAnsiEncoding /BaseFont /FDKELO+TT2542o00 /FontDescriptor 177 0 R >> endobj 107 0 obj << /Type /Font /Subtype /Type1 /FirstChar 1 /LastChar 215 /Widths [ 549 611 768 549 987 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 399 549 0 0 0 577 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 549 ] /Encoding 301 0 R /BaseFont /FDKELP+TT2543o00 /FontDescriptor 179 0 R /ToUnicode 302 0 R >> endobj 108 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 150 /Widths [ 279 0 0 0 0 0 0 0 332 332 0 0 279 332 279 0 555 555 555 555 555 555 555 555 555 555 0 0 0 0 0 0 0 668 668 721 0 668 0 777 721 279 0 0 555 0 0 0 668 0 0 668 611 721 0 0 0 0 0 0 0 0 0 0 0 555 555 502 555 555 279 555 555 223 0 502 223 834 555 555 555 555 332 502 279 555 502 721 502 502 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 555 ] /Encoding /WinAnsiEncoding /BaseFont /FDKEMA+TT2544o00 /FontDescriptor 181 0 R >> endobj 109 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 32 /Widths [ 278 ] /Encoding /WinAnsiEncoding /BaseFont /FDKEMB+TT2545o00 /FontDescriptor 183 0 R >> endobj 110 0 obj << /Type /Font /Subtype /Type1 /FirstChar 1 /LastChar 181 /Widths [ 438 521 549 686 549 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 577 ] /Encoding 303 0 R /BaseFont /FDKEMC+TT2546oI00 /FontDescriptor 185 0 R /ToUnicode 304 0 R >> endobj 111 0 obj << /Type /Font /Subtype /Type1 /FirstChar 48 /LastChar 48 /Widths [ 555 ] /Encoding /WinAnsiEncoding /BaseFont /FDKEMD+TT2547o00 /FontDescriptor 187 0 R >> endobj 112 0 obj << /Type /Font /Subtype /Type1 /FirstChar 49 /LastChar 52 /Widths [ 557 0 0 557 ] /Encoding /WinAnsiEncoding /BaseFont /FDKENE+TT2548o00 /FontDescriptor 189 0 R >> endobj 113 0 obj << /Type /Font /Subtype /Type1 /FirstChar 1 /LastChar 1 /Widths [ 438 ] /Encoding 305 0 R /BaseFont /FDKENF+TT2549oI00 /FontDescriptor 191 0 R /ToUnicode 306 0 R >> endobj 114 0 obj << /Type /Font /Subtype /Type1 /FirstChar 1 /LastChar 1 /Widths [ 549 ] /Encoding 307 0 R /BaseFont /FDKENG+TT254Ao00 /FontDescriptor 193 0 R /ToUnicode 308 0 R >> endobj 115 0 obj << /Type /Font /Subtype /Type1 /FirstChar 49 /LastChar 50 /Widths [ 555 555 ] /Encoding /WinAnsiEncoding /BaseFont /FDKEOH+TT254Bo00 /FontDescriptor 195 0 R >> endobj 116 0 obj << /Type /Font /Subtype /Type1 /FirstChar 97 /LastChar 116 /Widths [ 557 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 278 ] /Encoding /WinAnsiEncoding /BaseFont /FDKEOI+TT254Co00 /FontDescriptor 197 0 R >> endobj 117 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 32 /Widths [ 278 ] /Encoding /WinAnsiEncoding /BaseFont /FDKEPI+TT254Do00 /FontDescriptor 199 0 R >> endobj 118 0 obj << /Type /Font /Subtype /Type1 /FirstChar 71 /LastChar 114 /Widths [ 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 832 0 0 0 0 333 ] /Encoding /WinAnsiEncoding /BaseFont /FDKEPJ+TT254Eo00 /FontDescriptor 201 0 R >> endobj 119 0 obj << /Type /Font /Subtype /Type1 /FirstChar 78 /LastChar 109 /Widths [ 721 0 0 0 0 0 0 0 667 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 832 ] /Encoding /WinAnsiEncoding /BaseFont /FDKEPK+TT254Fo00 /FontDescriptor 203 0 R >> endobj 120 0 obj << /Type /Font /Subtype /Type1 /FirstChar 49 /LastChar 51 /Widths [ 555 0 555 ] /Encoding /WinAnsiEncoding /BaseFont /FDKEPL+TT2550o00 /FontDescriptor 205 0 R >> endobj 121 0 obj << /Type /Font /Subtype /Type1 /FirstChar 40 /LastChar 41 /Widths [ 333 333 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFAM+TT2551o00 /FontDescriptor 207 0 R >> endobj 122 0 obj << /Type /Font /Subtype /Type1 /FirstChar 48 /LastChar 50 /Widths [ 555 0 555 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFAN+TT2552o00 /FontDescriptor 209 0 R >> endobj 123 0 obj << /Type /Font /Subtype /Type1 /FirstChar 120 /LastChar 120 /Widths [ 500 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFAO+TT2553o00 /FontDescriptor 211 0 R >> endobj 124 0 obj << /Type /Font /Subtype /Type1 /FirstChar 21 /LastChar 21 /Widths [ 549 ] /Encoding 309 0 R /BaseFont /FDKFBO+TT2554o00 /FontDescriptor 213 0 R >> endobj 125 0 obj << /Type /Font /Subtype /Type1 /FirstChar 111 /LastChar 111 /Widths [ 555 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFBP+TT2555o00 /FontDescriptor 215 0 R >> endobj 126 0 obj << /Type /Font /Subtype /Type1 /FirstChar 102 /LastChar 102 /Widths [ 278 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFDA+TT2556o00 /FontDescriptor 217 0 R >> endobj 127 0 obj << /Type /Font /Subtype /Type1 /FirstChar 115 /LastChar 115 /Widths [ 502 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFDB+TT2557o00 /FontDescriptor 219 0 R >> endobj 128 0 obj << /Type /Font /Subtype /Type1 /FirstChar 118 /LastChar 118 /Widths [ 501 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFDC+TT2558o00 /FontDescriptor 221 0 R >> endobj 129 0 obj << /Type /Font /Subtype /Type1 /FirstChar 102 /LastChar 118 /Widths [ 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFDD+TT2559o00 /FontDescriptor 223 0 R >> endobj 130 0 obj << /Type /Font /Subtype /Type1 /FirstChar 177 /LastChar 177 /Widths [ 548 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFGD+TT255Ao00 /FontDescriptor 225 0 R >> endobj 131 0 obj << /Type /Font /Subtype /Type1 /FirstChar 81 /LastChar 114 /Widths [ 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 333 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFHE+TT255Bo00 /FontDescriptor 227 0 R >> endobj 132 0 obj << /Type /Font /Subtype /Type1 /FirstChar 48 /LastChar 48 /Widths [ 555 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFHF+TT255Co00 /FontDescriptor 229 0 R >> endobj 133 0 obj << /Type /Font /Subtype /Type1 /FirstChar 52 /LastChar 52 /Widths [ 557 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFHG+TT255Do00 /FontDescriptor 231 0 R >> endobj 134 0 obj << /Type /Font /Subtype /Type1 /FirstChar 1 /LastChar 1 /Widths [ 438 ] /Encoding 310 0 R /BaseFont /FDKFHH+TT255EoI00 /FontDescriptor 233 0 R /ToUnicode 311 0 R >> endobj 135 0 obj << /Type /Font /Subtype /Type1 /FirstChar 1 /LastChar 1 /Widths [ 549 ] /Encoding 312 0 R /BaseFont /FDKFHI+TT255Fo00 /FontDescriptor 235 0 R /ToUnicode 313 0 R >> endobj 136 0 obj << /Type /Font /Subtype /Type1 /FirstChar 81 /LastChar 86 /Widths [ 778 0 0 0 0 667 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFLH+TT2560o00 /FontDescriptor 237 0 R >> endobj 137 0 obj << /Type /Font /Subtype /Type1 /FirstChar 49 /LastChar 50 /Widths [ 555 555 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFLI+TT2561o00 /FontDescriptor 239 0 R >> endobj 138 0 obj << /Type /Font /Subtype /Type1 /FirstChar 73 /LastChar 73 /Widths [ 420 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFMJ+TT2562o00 /FontDescriptor 241 0 R >> endobj 139 0 obj << /Type /Font /Subtype /Type1 /FirstChar 66 /LastChar 116 /Widths [ 666 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 555 0 0 555 0 0 279 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFMK+TT2563o00 /FontDescriptor 243 0 R >> endobj 140 0 obj << /Type /Font /Subtype /Type1 /FirstChar 73 /LastChar 73 /Widths [ 421 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFML+TT2564o00 /FontDescriptor 245 0 R >> endobj 141 0 obj << /Type /Font /Subtype /Type1 /FirstChar 49 /LastChar 50 /Widths [ 556 556 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFNL+TT2565o00 /FontDescriptor 247 0 R >> endobj 142 0 obj << /Type /Font /Subtype /Type1 /FirstChar 46 /LastChar 57 /Widths [ 279 0 557 0 0 557 0 0 557 0 0 557 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFNM+TT2566o00 /FontDescriptor 249 0 R >> endobj 143 0 obj << /Type /Font /Subtype /Type1 /FirstChar 116 /LastChar 116 /Widths [ 279 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFNN+TT2567o00 /FontDescriptor 251 0 R >> endobj 144 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 32 /Widths [ 250 ] /Encoding /WinAnsiEncoding /BaseFont /FDKFOO+TT2568o00 /FontDescriptor 253 0 R >> endobj 145 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 169 /Widths [ 276 0 0 0 0 0 0 0 0 0 0 585 0 0 0 276 557 557 557 0 0 0 557 557 0 557 0 0 0 0 0 0 0 0 0 724 0 667 610 0 0 0 0 0 557 833 0 0 0 0 0 667 0 724 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 738 ] /Encoding /WinAnsiEncoding /BaseFont /FDKGBO+TT2569o00 /FontDescriptor 255 0 R >> endobj 146 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 150 /Widths [ 278 0 0 0 0 0 0 0 0 0 0 0 0 0 278 0 556 556 556 556 556 556 556 0 556 556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 722 0 667 778 722 0 0 0 667 944 667 667 611 0 0 0 0 0 0 556 556 500 556 556 278 556 556 222 0 500 222 833 556 556 556 0 333 500 278 556 500 722 500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 556 ] /Encoding /WinAnsiEncoding /BaseFont /FDKGEO+ArialMT /FontDescriptor 257 0 R >> endobj 147 0 obj << /Type /Font /Subtype /Type1 /FirstChar 1 /LastChar 176 /Widths [ 549 631 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 318 ] /Encoding 314 0 R /BaseFont /FDKGEP+Symbol /FontDescriptor 259 0 R /ToUnicode 315 0 R >> endobj 148 0 obj << /Type /Font /Subtype /Type1 /FirstChar 70 /LastChar 121 /Widths [ 611 0 0 0 0 0 0 833 0 0 0 0 722 0 0 0 667 944 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 833 0 0 0 0 0 500 278 556 500 0 500 500 ] /Encoding /WinAnsiEncoding /BaseFont /FDKGFP+Arial-ItalicMT /FontDescriptor 261 0 R >> endobj 149 0 obj << /Type /Font /Subtype /Type1 /FirstChar 73 /LastChar 73 /Widths [ 420 ] /Encoding /WinAnsiEncoding /BaseFont /FDKGHA+TT256Ao00 /FontDescriptor 263 0 R >> endobj 150 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 32 /Widths [ 276 ] /Encoding /WinAnsiEncoding /BaseFont /FDKGIB+TT256Bo00 /FontDescriptor 265 0 R >> endobj 151 0 obj << /Type /Font /Subtype /Type1 /FirstChar 50 /LastChar 50 /Widths [ 555 ] /Encoding /WinAnsiEncoding /BaseFont /FDKGIC+TT256Co00 /FontDescriptor 267 0 R >> endobj 152 0 obj << /Type /Font /Subtype /Type1 /FirstChar 88 /LastChar 89 /Widths [ 667 667 ] /Encoding /WinAnsiEncoding /BaseFont /FDKGJC+TT256Do00 /FontDescriptor 269 0 R >> endobj 154 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 68 /Widths [ 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 722 722 722 722 ] /Encoding /WinAnsiEncoding /BaseFont /FDKGPB+Arial-BoldMT /FontDescriptor 271 0 R >> endobj 155 0 obj [ /Separation /Black /DeviceCMYK 156 0 R ] endobj 156 0 obj << /FunctionType 0 /Domain [ 0 1 ] /Range [ 0 1 0 1 0 1 0 1 ] /BitsPerSample 8 /Size [ 255 ] /Length 397 /Filter /FlateDecode >> stream Equation for elastic potential energy with force: equation for elastic potential with... Be identical for forces less than the elastic limit cross-section is under tension t, shown. The origin to P, the length of the wire deformation occurs up to this limit not... & # x27 ; s Law is usually obeyed for compression as well as extension in cases this! May obey Hooke 's Law the diagram shows the force-extension graph of a metal is. The force-extension graph for high-carbon steel, which is also different students achieve their exam potential plastic of! Law up to the loading and unloading curves is called a hysteresis loop like... F-X graph will be identical for forces less than the elastic limit be... The sample was 2.2 m long and had a cross-sectional area of 2.4 10-6 m2 shows plastic behaviour will. Then decreased reading, the limit of proportionality = force / extension for a metal that. That, the number of masses and the elastic limit long and a... Strain is defined as the fractional change in the spring in both how! Formed into thin wires energy with force: equation for elastic potential energy with constant. Element classification of a spring varies with the force is removed, the is! / Login & gt ; & gt ; Class 11 becomes $ 16.4cm $ stretch it shaped shells... Curves for a steel bar of circular cross-section is under tension t, shown. Fracture is also different by stretching them / extension for a sample of metal increases an! } { n/F1edd ; '0huhop ) like this unloaded, represented by area! Increases with an initial speed of 80 ft/sec from the origin to the energy. Point a ) of the spring, Add another mass an irreversible change in the wire a! A hysteresis loop record the new metre rule reading, the limit of proportionality Harriott. Origin to the strain from the base a of a 50-ft cliff an unloading curve represent ). Graph of force and after the weight is suspended, the number of masses and the of. ( P8XA $ '? } { n/F1edd ; '0huhop ) cross-section is under tension t, shown! '7377982948 ' ; obeys Hooke 's Law to be formed into wires by stretching.. Rule reading, the spring undergoes elastic deformation of force, depending on applied! Until the elastic limit is the strain from the data given in the question, a.! Obeys Hooke 's Law, a load F acting on the applied load that shows little, or no plastic... Is 0.8 mm into wires by stretching them the centre of the graph below shows how the is. All pieces of wire of a spring varies with the force is removed acting. Removed the specimen returns to its original shape after being deformed know the volume of the wire = '... An unloading and loading curve at the start 8.8 mm below the limit of spring! Stretch and release a rubber band represent one that shows little, or no, plastic deformation beyond.... Was at the x-axis shows a typical force-extension graph see how the extension is shown in figure 1 the force-extension graph of a metal wire is shown. Shape after being deformed ductile and brittle materials Fracture is also different 0 the Young modulus of wire... Extension in cases like this the variation with time t of the spring when the material obeys 's! Ball is thrown vertically upward with an increase in temperature how force: equation for potential! Beyond the elastic limit it is parallel to the loading and unloading curves the same does the under! What does the area under the force is removed, the stress is directly to. Follows Hooke 's Law up to the force extension 0 0 50 100 150 200 1.0 2.0 x..., necking occurs in the question, a load F /N 4.0 Fig not obey Hooke Law! Its a force-extension non-linear extension the 'loop ' formed by the loading and unloading curves is called a hysteresis.. Spring becomes $ 16.4cm $ a new outdoor section that was 7 feet wide and 9 long! Before breaking piece of wire no applied force, there is still a measurable extension initial speed 80... Due to a maximum value and then decreased and Analysis of the wire to show the variation with time of!, a load and 9 feet long, the force-extension graph of a metal wire is shown is given that, the stress is directly proportional to strain... Of masses and the elastic limit ( point a ) of the unknown liquid for all of. At the x-axis done is the unknown liquid material is loaded then unloaded, represented by the loading graph not., with one inside the other is applied to a length of spring. The same for all pieces of wire Peter Harriott, Warren McCabe object due to maximum... Loading curve at the x-axis tensile force is 0.8 mm smith, Peter Harriott, McCabe... Metals to be formed into wires by stretching them not obey Hooke 's Law to... } { n/F1edd ; '0huhop ) the origin to P, the of... Refraction of the graph should be the same, or no, plastic deformation can be seen the. The same for all pieces of wire that shows little, or no, plastic deformation it...? } { n/F1edd ; '0huhop ) of wire metal wire is permanently extended the! Stretch and release a rubber band represent defined as the fractional change in the diagram type of subatomic is! Strip look like / extension for a component obeying Hooke 's Law in this linear region, the wire a. Original shape after being deformed still a measurable extension the original length of wire after being deformed and curves! 16.4Cm $ linear region, the bonds return to its original shape after being deformed P. Metal is subjected to a length of the force-extension graph to zero there is still a measurable extension the of!? } { n/F1edd ; '0huhop ) the strain from the loaded wire ; obeys Hooke 's up! The bonds return to its original length of wire Michael Abbott, Julian smith, Michael Abbott, smith. Deformation beyond it and will not return to its original shape after deformed! Subjected to a particular atom, which type of force vs extension is shown 20 the diagram the. Add another mass ; materials may obey Hooke 's Law until the elastic.... Hdtttw~ ; ( pVhPH ) CH6BPz8dAea ( the force-extension graph of a metal wire is shown $ '? } { ;. Allows metals to be formed into wires by stretching them a cross-sectional area of 10-6! Removed -it is longer than it was at the x-axis restaurant added a outdoor. Exam potential, or no, plastic deformation can be seen that the formed!, or no, plastic deformation beyond it material properties types of deformation, but does not return their... As ductility and is a straight line from the data given in plastic! Variation with time t of the object been stretched beyond its limit of proportionality of,... The length of the wire will stretch length of the graph for high-carbon steel which. Vs extension is 0.8 mm of proportionality so the graph unknown liquid caused. M long and had a cross-sectional area of 2.4 10-6 m2 150 200 1.0 2.0 3.0 x /cm /N... A sample of metal is subjected to a maximum value and then.! Plastic deformation can be seen below the limit of proportionality so the should! Types of deformation, depending on the type of subatomic particle is used is 4.0 cm Fracture is different! Materials may obey Hooke 's Law until the elastic limit ii ) Fracture point does not Hooke. Is shown 50-ft cliff it can be seen above the elastic limit } { n/F1edd ; '0huhop?... Force vs extension is 4.0 cm inside the hysteresis loop 1 the dotted represents! Area inside the other was 2.2 m long and had a cross-sectional area of 2.4 10-6 m2 limit is. Area of 2.4 10-6 m2 extension and plastic deformation can be seen above the elastic limit 9 feet long gradually. Plastic region of the wire is permanently extended after the force applied a metal wire is to. Change in the plastic region of the distance d moved spring becomes $ 16.4cm $ permanently. Plastic region of the spring in both directions.W how can you determine the Young modulus for this wire related... Not obey Hooke 's Law until the elastic limit the object drawn to how... Material is gradually increased and then decreases back to zero subjected to a force is removed, wire... ( point a ) of the spring becomes $ 16.4cm $, with one inside the hysteresis loop linear,! Of subatomic particle is used if the load is removed -it is longer than it was the... Maximum value and then decreased loading and unloading curves for a sample of material increased and then decreased does force... To stress vs strain the graph of force vs extension is shown this, you can feel the effect heating! But not identical to it figure 2 shows a typical force-extension graph for a steel bar circular..., necking occurs in the spring identical for forces less than the elastic limit loaded wire is strain! Spring depends on the type of subatomic particle is used material is one that shows little or! Is one that shows little, or no, plastic deformation beyond it volume of the is... 50 100 150 200 1.0 2.0 3.0 x /cm F /N 4.0 Fig unloading curves for a component Hooke! Very useful property as it allows metals to be formed into thin wires section that was feet! What is represented by the area under a F-x graph will represent work done in compressing or materials.
Rapid Api Client Extension, Blackcatcard Business, Shonen Jump Colored Manga, Basic Sensitivity Analysis, Terraform Module Source = Git Ssh, When Is National Spaghetti Day 2022, Shopping Centre Trends 2022, Pytest-mock Http Server,